MetNetComp Database [1] / Core Genes

A set of core genes for simulation-based growth-coupled production. You can also see minimal gene deletions.


Model : e_coli_core [2].
Target metabolite : gln__L_c
Core genes for growth-coupled production (at least stoichioemetrically feasible)
  #Remaining genes : 90
  Remaining genes: b0351 b0118 b0116 b0727 b2587 b0356 b1478 b3734 b3733 b3736 b3737 b3739 b3738 b3735 b3731 b3732 b0720 b0734 b0979 b2779 b2925 b1773 b2097 b2492 b0904 b4152 b4153 b4151 b1819 b1817 b2416 b2415 b1779 b1101 b2417 b1621 b1297 b3870 b0809 b0811 b1761 b3212 b1136 b2281 b2277 b2280 b2286 b2287 b2284 b2282 b2279 b2283 b2285 b2288 b2278 b1603 b0451 b0114 b0115 b3916 b1723 b3114 b2579 b3951 b0902 b3952 b0903 b4025 b2926 b3612 b4395 b0755 b3493 b2987 b3956 b1676 b1854 b3386 b4301 b2914 b4090 b0721 b0722 b0723 b0728 b0008 b2464 b2465 b2935 b3919   (List of alternative genes)
  Computed by: AddGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.088759 (mmol/gDw/h)
  Minimum Production Rate : 0.939916 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_glc__D_e : 10.000000
  EX_nh4_e : 2.363819
  EX_pi_e : 0.326519

Product: (mmol/gDw/h)
  EX_h_e : 23.163123
  EX_for_e : 12.850353
  EX_etoh_e : 10.118733
  EX_pyr_e : 3.608676
  EX_akg_e : 1.521875
  Auxiliary production reaction : 0.939916

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Orth, J. D., Fleming, R. M., Palsson, B. Ø. (2010). Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal plus, 4(1).
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 27-Sep-2023
Contact