MetNetComp Database / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iHN637 [2].
Target metabolite : 23dhmp_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (10 of 65: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 7
  Gene deletion: CLJU_RS06265 CLJU_RS11895 CLJU_RS07210 CLJU_RS03475 CLJU_RS08715 CLJU_RS01595 CLJU_RS05590   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.066395 (mmol/gDw/h)
  Minimum Production Rate : 0.099969 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_fru_e : 5.000000
  EX_nh4_e : 0.505699
  EX_pi_e : 0.076928
  EX_k_e : 0.012693
  EX_so4_e : 0.012538
  EX_fe2_e : 0.000918
  EX_mg2_e : 0.000564
  EX_ca2_e : 0.000338
  EX_cl_e : 0.000338
  EX_fol_e : 0.000059
  EX_cu2_e : 0.000046
  EX_mn2_e : 0.000045
  EX_ribflv_e : 0.000030
  EX_zn2_e : 0.000022
  EX_ni2_e : 0.000021
  EX_cobalt2_e : 0.000016
  EX_thm_e : 0.000015

Product: (mmol/gDw/h)
  EX_h_e : 6.690445
  EX_lac__D_e : 6.221399
  EX_co2_e : 3.004379
  EX_etoh_e : 2.416827
  EX_h2o_e : 1.860702
  Auxiliary production reaction : 0.099969
  DM_succ_c : 0.008396
  EX_ala__D_e : 0.001886
  EX_glyc_e : 0.001527
  DM_mththf_c : 0.000148

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Orth, J. D., Fleming, R. M., Palsson, B. Ø. (2010). Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal plus, 4(1).
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 27-Sep-2023
Contact