MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : 25drapp_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (53 of 77: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 30
  Gene deletion: b4069 b4384 b2744 b3708 b3008 b3752 b2297 b2458 b2926 b2407 b1982 b2797 b3117 b1814 b4471 b4374 b2361 b2291 b0261 b0411 b1701 b1805 b0114 b2366 b0529 b2492 b0904 b1533 b3927 b3662   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.644911 (mmol/gDw/h)
  Minimum Production Rate : 0.409774 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 28.737068
  EX_glc__D_e : 10.000000
  EX_nh4_e : 9.013858
  EX_pi_e : 1.031859
  EX_so4_e : 0.162402
  EX_k_e : 0.125882
  EX_fe2_e : 0.010358
  EX_mg2_e : 0.005595
  EX_ca2_e : 0.003357
  EX_cl_e : 0.003357
  EX_cu2_e : 0.000457
  EX_mn2_e : 0.000446
  EX_zn2_e : 0.000220
  EX_ni2_e : 0.000208
  EX_cobalt2_e : 0.000016

Product: (mmol/gDw/h)
  EX_h2o_e : 50.217097
  EX_co2_e : 29.089030
  EX_h_e : 8.350032
  Auxiliary production reaction : 0.409774
  EX_ac_e : 0.375458
  DM_5drib_c : 0.000433
  DM_4crsol_c : 0.000144

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact