MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : ac_e
List of minimal gene deletion strategies (Download)

Gene deletion strategy (15 of 18: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 15
  Gene deletion: b2925 b2097 b1779 b2690 b0675 b1493 b3517 b4015 b0822 b0726 b2913 b1727 b1444 b1300 b4042   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.699712 (mmol/gDw/h)
  Minimum Production Rate : 1.242996 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_fe2_e : 1000.000000
  EX_h_e : 992.316530
  EX_o2_e : 277.298024
  EX_glc__D_e : 10.000000
  EX_nh4_e : 7.556833
  EX_pi_e : 0.674947
  EX_so4_e : 0.176202
  EX_k_e : 0.136579
  EX_mg2_e : 0.006070
  EX_cl_e : 0.003642
  EX_ca2_e : 0.003642
  EX_cu2_e : 0.000496
  EX_mn2_e : 0.000484
  EX_zn2_e : 0.000239
  EX_ni2_e : 0.000226
  EX_cobalt2_e : 0.000017

Product: (mmol/gDw/h)
  EX_fe3_e : 999.988762
  EX_h2o_e : 547.265881
  EX_co2_e : 28.794034
  EX_ac_e : 1.242996
  DM_5drib_c : 0.000157
  DM_4crsol_c : 0.000156

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact