MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : air_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (20 of 84: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 25
  Gene deletion: b3399 b1241 b0351 b4069 b2502 b2744 b3115 b1849 b2296 b3236 b1982 b3616 b3589 b2210 b4374 b0675 b2361 b2291 b0261 b0112 b2868 b0114 b0529 b2492 b0904   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.479895 (mmol/gDw/h)
  Minimum Production Rate : 1.839414 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 21.317412
  EX_nh4_e : 10.703757
  EX_glc__D_e : 10.000000
  EX_pi_e : 2.302324
  EX_so4_e : 0.120847
  EX_k_e : 0.093672
  EX_fe2_e : 0.007708
  EX_mg2_e : 0.004163
  EX_cl_e : 0.002498
  EX_ca2_e : 0.002498
  EX_cu2_e : 0.000340
  EX_mn2_e : 0.000332
  EX_zn2_e : 0.000164
  EX_ni2_e : 0.000155
  EX_cobalt2_e : 0.000012

Product: (mmol/gDw/h)
  EX_h2o_e : 46.054850
  EX_co2_e : 20.500870
  EX_h_e : 12.471677
  EX_ac_e : 2.541279
  Auxiliary production reaction : 1.839414
  EX_ade_e : 0.000537
  DM_5drib_c : 0.000322
  DM_4crsol_c : 0.000107

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact