MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : dutp_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (68 of 79: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 42
  Gene deletion: b4467 b4382 b4069 b4384 b3708 b0871 b3115 b1849 b2296 b2925 b2097 b0030 b2407 b1004 b3713 b1109 b0046 b1779 b1982 b2797 b3117 b1814 b4471 b3946 b2210 b0825 b0261 b1701 b1805 b1602 b2406 b0114 b2366 b0529 b2492 b0904 b1533 b3927 b1380 b0515 b3662 b2285   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.344130 (mmol/gDw/h)
  Minimum Production Rate : 0.437318 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 29.645655
  EX_glc__D_e : 10.000000
  EX_nh4_e : 4.592751
  EX_pi_e : 1.643903
  EX_so4_e : 0.086659
  EX_k_e : 0.067172
  EX_fe2_e : 0.005527
  EX_mg2_e : 0.002985
  EX_cl_e : 0.001791
  EX_ca2_e : 0.001791
  EX_cu2_e : 0.000244
  EX_mn2_e : 0.000238
  EX_zn2_e : 0.000117
  EX_ni2_e : 0.000111

Product: (mmol/gDw/h)
  EX_h2o_e : 45.286627
  EX_co2_e : 27.622732
  EX_h_e : 8.001708
  EX_pyr_e : 4.637815
  Auxiliary production reaction : 0.437318
  EX_ac_e : 0.200348
  EX_alltn_e : 0.000385
  DM_5drib_c : 0.000231
  DM_4crsol_c : 0.000077

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact