MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : forcoa_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (1 of 80: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 27
  Gene deletion: b4382 b4384 b3708 b3008 b3752 b0871 b2407 b1982 b2797 b3117 b1814 b4471 b0261 b2406 b0114 b0886 b1539 b2492 b0904 b2578 b1533 b3927 b3825 b0494 b4141 b1798 b3662   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.780619 (mmol/gDw/h)
  Minimum Production Rate : 0.076791 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 24.563580
  EX_glc__D_e : 10.000000
  EX_nh4_e : 8.968163
  EX_pi_e : 0.983364
  EX_so4_e : 0.273367
  EX_k_e : 0.152371
  EX_fe2_e : 0.012538
  EX_mg2_e : 0.006772
  EX_ca2_e : 0.004063
  EX_cl_e : 0.004063
  EX_cu2_e : 0.000553
  EX_mn2_e : 0.000539
  EX_zn2_e : 0.000266
  EX_ni2_e : 0.000252
  EX_cobalt2_e : 0.000020

Product: (mmol/gDw/h)
  EX_h2o_e : 48.417835
  EX_co2_e : 26.268008
  EX_h_e : 7.403017
  Auxiliary production reaction : 0.076791
  DM_5drib_c : 0.000524
  DM_4crsol_c : 0.000174

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact