MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : gdpfuc_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (40 of 74: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 27
  Gene deletion: b3399 b4069 b2744 b3708 b3008 b2297 b2458 b0160 b1779 b1982 b2797 b3117 b1814 b4471 b0675 b2361 b0261 b4381 b2406 b0114 b2366 b2492 b0904 b2578 b1533 b3927 b3821   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.651860 (mmol/gDw/h)
  Minimum Production Rate : 0.259069 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 27.595025
  EX_glc__D_e : 10.000000
  EX_nh4_e : 8.335378
  EX_pi_e : 1.146927
  EX_so4_e : 0.164151
  EX_k_e : 0.127238
  EX_fe2_e : 0.010470
  EX_mg2_e : 0.005655
  EX_ca2_e : 0.003393
  EX_cl_e : 0.003393
  EX_cu2_e : 0.000462
  EX_mn2_e : 0.000450
  EX_zn2_e : 0.000222
  EX_ni2_e : 0.000211
  EX_cobalt2_e : 0.000016

Product: (mmol/gDw/h)
  EX_h2o_e : 49.179365
  EX_co2_e : 28.338578
  EX_h_e : 7.146260
  EX_ac_e : 0.379504
  Auxiliary production reaction : 0.259069
  DM_5drib_c : 0.000437
  DM_4crsol_c : 0.000145

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact