MetNetComp Database [1] / Minimal gene deletions

Minimal gene deletions for simulation-based growth-coupled production. You can also see maximal gene deletions.


Model : iML1515 [2].
Target metabolite : oxur_c
List of minimal gene deletion strategies (Download)

Gene deletion strategy (12 of 79: See next) for growth-coupled production (at least stoichioemetrically feasible)
  Gene deletion size : 15
  Gene deletion: b1241 b0351 b4069 b2297 b2458 b2925 b2097 b0521 b1779 b2690 b3945 b0114 b0529 b2492 b0904   (List of alternative genes)
  Computed by: RandTrimGdel [1] (Step 1, Step 2)

When growth rate is maximized,
  Growth Rate : 0.661405 (mmol/gDw/h)
  Minimum Production Rate : 0.337554 (mmol/gDw/h)

Substrate: (mmol/gDw/h)
  EX_o2_e : 30.294810
  EX_glc__D_e : 10.000000
  EX_nh4_e : 8.232650
  EX_pi_e : 0.637995
  EX_so4_e : 0.166555
  EX_k_e : 0.129102
  EX_fe2_e : 0.010623
  EX_mg2_e : 0.005738
  EX_ca2_e : 0.003443
  EX_cl_e : 0.003443
  EX_cu2_e : 0.000469
  EX_mn2_e : 0.000457
  EX_zn2_e : 0.000226
  EX_ni2_e : 0.000214
  EX_cobalt2_e : 0.000017

Product: (mmol/gDw/h)
  EX_h2o_e : 49.885677
  EX_co2_e : 30.240736
  EX_h_e : 8.303828
  DM_oxam_c : 0.414428
  EX_ac_e : 0.385061
  Auxiliary production reaction : 0.337554
  DM_5drib_c : 0.000149
  DM_4crsol_c : 0.000147

Visualization
  1. Download JSON file.
  2. Go to Escher site [3].
  3. Select "Data > Load reaction data" and apply the downloaded file.

References
[1] Tamura, T. MetNetComp: Database for minimal and maximal gene deletion strategies for growth-coupled production of genome-scale metabolic networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press.
[2] Norsigian, C. J., Pusarla, N., McConn, J. L., Yurkovich, J. T., Dräger, A., Palsson, B. O., & King, Z. (2020). BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic acids research, 48(D1), D402-D406.
[3] King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., & Palsson, B. O. (2015). Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS computational biology, 11(8), e1004321.


Last updated: 21-Sep-2023
Contact